石家庄奥数网
石家庄

2022年大事记

奥数石家庄站 > 小升初 > 学习资料 > 正文

小升初奥数中的牛吃草的问题

来源:石家庄奥数网整理      2011-09-21 10:58:31

  牛吃草问题又称为消长问题或牛顿牧场,是小升初奥数中经常出现的一种题型。典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。由于吃的天数不同,草又是天天在生长的,所以草的存量随牛吃的天数不断地变化。

  解决牛吃草问题常用到四个基本公式,分别是:

  (1)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);

  (2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;`

  (3)吃的天数=原有草量÷(牛头数-草的生长速度);

  (4)牛头数=原有草量÷吃的天数+草的生长速度。

  这四个公式是解决消长问题的基础。由于牛在吃草的过程中,草是不断生长的,所以解决消长问题的重点是要想办法从变化中找到不变量。牧场上原有的草是不变的,新长的草虽然在变化,但由于是匀速生长,所以每天新长出的草量应该是不变的。正是由于这个不变量,才能够导出上面的四个基本公式。牛吃草问题经常给出不同头数的牛吃同一片次的草,这块地既有原有的草,又有每天新长出的草。由于吃草的牛头数不同,求若干头牛吃的这片地的草可以吃多少天。解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题。

  这类问题的基本数量关系是:

  1.(牛的头数×吃草较多的天数-牛头数×吃草较少的天数)÷(吃的较多的天数-吃的较少的天数)=草地每天新长草的量。

  2.牛的头数×吃草天数-每天新长量×吃草天数=草地原有的草。

  例子:

  一个牧场长满青草,牛在吃草而草又在不断生长,已知牛27头,6天把草吃尽,同样一片牧场,牛23头,9天把草吃尽。如果有牛21头,几天能把草吃尽?

  摘录条件:27头6天原有草+6天生长草

  23头9天原有草+9天生长草21头?天原有草+?天生长草

  解答:这类问题关键是要抓住牧场青草总量的变化。设1头牛1天吃的草为"1",由条件可知,前后两次青草的问题相差为23×9-27×6=45。为什么会多出这45呢?这是第二次比第一次多的那(9-6)=3天生长出来的,所以每天生长的青草为45÷3=15

  现从另一个角度去理解,这个牧场每天生长的青草正好可以满足15头牛吃。由此,我们可以把每次来吃草的牛分为两组,一组是抽出的15头牛来吃当天长出的青草,另一组来吃是原来牧场上的青草,那么在这批牛开始吃草之前,牧场上有多少青草呢?

  (27-15)×6=72

  那么:第一次吃草量27×6=162第二次吃草量23×9=207

  每天生长草量45÷3=15

  原有草量(27-15)×6=72或162-15×6=72

  21头牛分两组,15头去吃生长的草,其余6头去吃原有的草那么72÷6=12(天)

  方程解答:

  在学习到方程。这题目很容易解决。

  利用以上例子我们有以下解法:

  方程解答:假设原来有的草为x份,每天长出来的草为y份,每头牛每天吃草1份。

  那么可以列方程:

  x+6y=27×6

  x+9y=23×9

  解得x=72,y=15

  若放21头牛,设n天可以吃完,则:

  72+15n=21nn=12天

关注奥数网官方微信 数学资料、数学真题、更有全国教育资讯
微信搜索“奥数网”或扫描二维码即可添加

  

  • 欢迎扫描二维码
    关注奥数网微信
    ID:aoshu_2003

  • 欢迎扫描二维码
    关注中考网微信
    ID:zhongkao_com

热门中学

试题资料

教育导航

  1. 北京站 上海站 广州站 深圳站
  2. 天津站 武汉站 成都站 石家庄站
  3. 南京站 杭州站 济南站 苏州站
  4. 郑州站 沈阳站 太原站 重庆站
  5. 长沙站 合肥站 宁波站 青岛站
本地教育

本地教育资讯 | 择校指南 | 经验总结

面试指导 | 简历制作 | 衔接问题

分班考试 | 考试真题 | 学区房

热门资料

练习题 | 学习资料

真题资料 | 教育新闻

重点中学

石家庄四十三中 | 石家庄四十一中

石家庄第四十中 | 石家庄第二中学

石家庄二十八中 | 石家庄四十二中

小学试题

期中试题 | 口算题

期末试题 | 知识点

单元测试 | 练习题

京ICP备09042963号-9 京公网安备 11010802020155号

违法和不良信息举报电话:010-56762110      举报邮箱:wzjubao@tal.com

奥数网版权所有Copyright@2005-2021 www.aoshu.com. All Rights Reserved.